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Abstract
The electric field effect on the smectic-A - smectigZ@hase transition of antiferroelectric liquid crystal have
been investigated theoretically. A phenomenological theory under DC field has been developed to establish the
calculated hysteresis loop and thgelectric field»-T" (temperature)phase diagram, in which a tricritical point
was found.
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I. INTRODUCTION two transition parameters the situation is rather different, and
the procedure for finding TCP is a little more complicated.
The purpose of the present paper is to reexamine the previ-
ously studied simple Landau theory written in a term of two
Cgarameters for second-order SmA-Singhase transition [9],
ith the emphasis put on analytical derivation of the TCP, hys-
éresis loop and then present the— T phase diagrams in a

Since the discovery of the antiferroelectric Stn@hase,
several new phases have been found in antiferroelectric li
uid crystals. Among these, the Sth@hase is unique. This
phase was already found by DSC measurement in 1989 [1, 2
but it took 10 years to clarify the structure by such sophisti-
cated experiments as resonant X-ray diffraction [3] and dif.more transparant way.
ferential optical reflectivity [4]. It was found that the SHC
phase has a helical structure like the ferroelectric Spitase,
but the pitch is very short. For example, itis about three layers
in MHPOCBC, which shows the phase sequence as smC
SmC:-SmA as increasing the temperature. First, the order parameter in theth smectic layer will be

As in solid ferroelectrics, applying an electric field is a good 9€fin€d. The structures of the SmA and SmC phases were

method to investigate the molecular neighboring interactionSNWn in Fig. 1. In the SmA phase the molecules are per-
because in chiral smectic liquid crystals the electric field Coup_endlcular to the_smgctlc layers, while in '_che SmC phase_ they
ples with the order parameter representing the amplitude a tin the_ same direction. The molecular tilt can be des_crlbed
phase of the molecular tilt in each layer. Recently a preise PY @ Unit vector parallel to the molecules, called a director
(electric field)-T (temperature) phase diagram of an antifer- = (7%: 7%y, 71jz). Since opposite orientations of the di-
roelectric liquid crystal MHPOCBC was obtained by means of €ctor are the same, it is natural to use a second rgnk tensor
dielectric measurements [5] as well as by using a photoelasti¢i’%i - FTom the components we can construct an axial vector:
modulator [6]. In the SmA(SMC) to SnjCransition, there -

exists a tricritical point (TCP) where the dielectric constant & = (&ar &Gy) = (Myynjz, —njan;z) 1)
begins to jump discontinously. This tricritical point has been .
investigated in detail by Bourngt al. [7]. In ferroelectric where}hez axis '? tqken along the Iaxer normal. In the §mA
and antiferroelectric liquid crystal phase transitions the TCAPhas&; = 0, while in the SmC phasg; # 0. Therefores;
is of great interest from a viewpoint of related anomalies iniS the order parameter describing the SmA-SmC phase transi-

physical properties. tion.

The phenomenological theories have been developed so far
to explain the phase sequences and dynamics properties of O O O O OO O i/jj /ﬂj
chiral smectic liquid crystals [8]. When the free energy is
expanded in the Landau-type power series in terms of a sin- O O O O O O O ﬂ ﬂjﬂ ﬂﬂj
gle transition parameter, the TCP is simply recognized as the
point in a phase diagram where the coefficients of the second O O O O O O O jﬂ j/ﬂjﬂ
order and fourth order terms vanish simultaneously. But, in
the case where the free energy is written in terms of more than (a) SmA (b) SmC

Il. ORDER PARAMETER

FIG. 1: Typical smectic phases, (a) SmA and (b) SmC.
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Z n electric coupling between the ferroelectric mode and the po-
larization, which contributes to the linear dielectric response.
In the third-order nonlinear dielectric response, on the other
hand, the nonlinear coupling between the nonpolar soft mode
and the ferroelectric mode plays an essential role. Taking into
account these couplings, the free enefgynder an applied
electric field can be expanded as

o ﬂ O/ ﬂ n
X ;= 7”53 + e G e 6
FIG. 2: Relationship between the directyrand the order parameter —Ag (1P + &2 Pg2) — A (E5aPra + EpyPry)
& , 1,
713 P2 (P;,E, + P E,), 6
+2X +2Xf f (Ps + Py y) (6)
where

In chiral smectic liquid crystals, which contain chiral car-
bons, the tilting direction changes moving along the layer nor- =8 +85,8=E,+6, (7
mgl and.the sporlta_neous polarization appears in each layer. p2_ p? + P2, p?— p2 4 p? ®)
It is obvious that¢; is always parallel or antiparallel to the 1 g " Tar S fo T Ty
polarization. For example, in the ferroelectric phase (SmC*Here,x; the dielectric susceptibility without the coupling be-
the molecules tilt as in the SmC phase Eytrotates slowly tween the polarization and ferroelectric order parameter. The
to form a helix and the in-plane polarization rotates as well. term represents the nonlinear biquadratic coupling between
While in the antiferroelectric phase, the molecules in thethe ferroelectric and soft modes; is the piezoelectric con-
neighboring layers tilt in the opposite directions and so thestant. Equilibrium conditions for the ferroelectric polarization
polarizations also point to the opposite directions, and fur{Py., Pr,) and 1, P,;2)yield,
thermore the chirality causes a small deviation fromitke®
alternation in the tilt)i)etween two consecutive layers and the 0f[0Pgs =001 Pra = XsA&po + X1 Eo ©)

formation of a helical structure as well as in the SmC* phase. Of|0Ppy =001 Pry = xsAf&py +x7Ey  (10)
When an electric field is applied parallel to the smectic OfJOPp =00r Py = xs\pépa (11)
layer, two kinds of liquid crystal molecular motion are needed Of 0P =00r Py = XtAsEpy (12)

to consider, a spatially homogeneous tilt, i.e., the ferroelec-
tric mode (¢4, £y ), and a helicoidal tilt, i.e., the soft mode Substituting Eq. (9-12) into Eq. (6), it is obtained
(gql,gqg) related to the SmA-SmCphase transition, which

is the primary order parameter in our case. With these modes y _ Q4,2 @54 %5; &5; + 9535?

the order parameter in thgh layer, gj, can be expressed as 1

(3] —XsAr EoBe + &y By) = s (B2 + By) (13)

jz = x cjd — inq. ’d7 2 i

& S & o8 e Sz i J 2) wherea, = o — xgA2, af = s — x;A7. When an electric
Gy = &y +Equsingejd + Eg2 cos gejd, () field is applied along the-axis, the free energy densifyis

whereg. is the wave number of the helicoidal structure and 9'Ven as

the layer spacing. Here, the experimental fact shows that no 8,

«
stripe corresponding to the helical structure was observed with [ = ?q o+ Z&;‘l + %gix Bt e §fz + 5 2&7y
a polarizing microscope in the process of changing the applied 1
field [7]. This indicates that the very short pitch helical struc- XA Ee — gxfEi (14)
ture in the SmG should disappear without the divergence
of the pitch, i.e., the amplitude of the helix should becomes, has been dropped because it cannot be excited by the field
zero. Thereforeg,. can be regarded as constant. Similarly, £
the polarizations corresponding to each relaxation modes are

described as,
IV. E-T PHASE DIAGRAM

Pj, = Pyy + Py1cosqejd — Pyasing.jd, (4)

Pj, = Pty + Pyisingqjd + Py cosqcjd, (5) From the equilibrium conditions, a set of simultaneous non-
linear equations is obtained as

of .
. FREE ENERGY 5 = apésa + Br&le + nén&re — XsArEy = 0(15)

The ferroelectric mode located at the Brillouin zone cen- af

_ 2 2 _
ter is directly excited by the applied field through the piezo-  9¢,; $a1 (aq +Bal + 7/§fm) =0 (16)
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The stability of the equilibrium state obtained is assured if while if otherwise, by Eq. (22) and Eq. (24).
These apply only to the second order transition. With de-

2
87210 = a;+ 3@,@2% + 77531 > 0, (17) creasing temperature, the first order transition may take place
0¢s, from SmG, phase to SmC phase whéf) # 0 even if both
2 f ) , D*f0¢3, and_a2 f10€2 are still positive. We have to re-
8752 = aq+3085n + 1€ >0, (18)  sort to numerical calculations, to some extent, to determine
a . , the SmC,-SmC phase boundary of the first order transition as
ggj 8537_55 following.
[Hi| = | 57F by First the limit stability is determined for the SmC phase
9E;.06,  0€2, when decreasing and Srfi(bhase when increasing the dc-
82f 92f 2f \’ field, respectively. For the SmC phagg:(= 0, &, # 0),
= 5 a ( ) >0 (19) Eq. (15) becomes
8§fgg afql 8€fxa€q1 1
E, = —— (ay&pe + B5€3,) . for SmC, 27
where U (asés 1€5) (27)
2
aif =21t (20)  Where¢;, is obtained by using Eq. (23) which yield
agfxafql ’ a
2 _ q
and the values representing the concerned equilibrium state {far = _T]- (28)

have to be substituted f@y,, dan¢,; in |H;;|. The condition
for the limit stability of phases, in another words, the phasé®" the other hand, for the Sm®hase {1 # 0, {7z # 0),

transition takes place when with the use of Eq. (16)
1
|Hij| = (ay + 30563, +1601) (g +3B,E5 + néfs) g+ Byl + 03, =0 — €2 = e (—aq —n€2,) (29)
—An*EnEF, = 0. (21) !
e ) Eg. (15) becomes,
When electric field is applied;;, appears. Therefore un-
der the effect of field SmA phas€,( = 0, {;, = 0) has to 1 Qqn )\ .3
q Eop = —+— af — —— ff.L—"_ ﬂf_i ff’l,‘
transform to SmC phasé = 0, {¢» # 0). For large elec- XfAf By By ‘
tric field the SmC, phase {,1 # 0, ;. # 0; note that¢, is for SmG,, (30)

not zero under an external field) becomes less stable, because
whenéy, is large, a nonzerg,; would increase the free en- where the subscript to E, is used to indicate that it is
ergy throughZ¢2,£7, term in Eq. (14). This means that only the field in the SmG phase. ¢, is obtained by using
the SmC phase is stable for large Therefore there must Egs. (29),(21) which yield

be exist a phase boundary between the Sipase and SmC

phase . If¢,;; vanishes continuously on the phase boundary, 5?12 = *LW; (31)
the transition is of the second order and the condition for it is 3 (B4Bq = 1)
expressed, using Eq. (21), as
o2 a V. TRICRITICAL POINT
ag?f :af+3ﬁf§§gc=()—>5;w=—ﬁff, (22)
Je Let us consider the TCP related to the transition from §mC
or phase to SmC phase, which takes place with decreasing or
0% f 9 5 ay increasing electric field, is considered. Needles to say, the
ez, aq + 085, =0 =&y = TR (23)  tricritical point is located on the second order transition line
q

where Eq. (15), Eq. (16) and Eqg. (21) are satisfied. Here
sinced? f/0¢,06,1 = 0 for €1 = 0, wheregy, is obtained  a general way to determine the TCP is considered. Note that

from Eq. (15) with§,, = 0 by the value of ¢, in the SmC, phase is determined by Eq. (15)
1 (but not by Eq. (16) which is satisfied by agy, if £,1 = 0),
Ey = —— (op€pa + BEl,) (24)  which is an even function of;1, that is,d€y. /d§; = 0 at
XfAf ¢ = 0, the free energy functiofi({ ., £,1) can be regarded

as a function of a single parametgfi. Then the free energy

2 2 2 2
If 6°f/083, > 0°f /0, fucntion can be expanded aroufid = 0 as

ay —aq+ (36r —n)&f, > 0, (25) )
— f(0 1(d*f 5
the phase boundary is determined by Eq. (23) and Eqg. (24) f(&q) = £(0) + 2\ de2 St
which yields, 7 en=0
1 [ d*f
1 « « ﬂf) 4= <> 44 (32)
E,=——, /- _ a7) 26 1 ql )
CoxsMr Vo <af n (20) P\ % £1=0
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sincef is an even function of; . Ex 1 .
At the tricrical point, the relation el
0.8, e L1
&2 f } 2f  of (&, el
- = + =0, (33) 0.6 R
d£§1 £41=0 8531 g d§§1 L2 TCP
a‘f } _ O O (@ 0
d’fgl £q1=0 8531 affwa’fgl dggl 0.2
2
82](' dzgfz of
+ 3 =0, (34)
35%(@’531 0.4 0.5 0.6 0.7 0.8 0.9 1

IG. 3: Theoretically obtained E-T phase diagram, with= a, +

has to be satisfied, and both relations vanish simultaneous /3,—03,8; =n=1,xs = 1, A\; = 1inthe SmC, phase .

[10]. On differentiating Eq. (15) with respect §g:;

& of _ PP PG P g
dez, \ 9q €10 - 083, d&3,  0€y, 082, N the first order phase transition from Sip@ SmC has been
obtained.

we obtain The similarE' — T" phase diagram has been obtained exper-
o imentally by Bournyet al. by the microscopic observation of

42, Wg&% texture change under dc electric fields [7]. But they cannot
e } =57 (36)  draw the line between;(rcp) (the tempererature of TCP)

al ) €n=0 067, andT¢ (the SmA-SmG phase transition temperature) since

no texture change and no stripe were observed when the elec-
and on putting this into Eq. (34), we find the condition of tric field was gradually increased. It is indicating that in the
appearance of the TCP as phase boundary line, the transition from the Smghase to
4 4 the unwound SmC phase should take place continuously not
df} — Of through a structure with a large pitch, as usually observed in
dey, £41=0 064 the second-order phase transition. BelBw- p, on the other
hand, it is seen the narrow region limited by the liigsand

By assuming suitable temperature dependenciess@nd L, in Fig. 4., which correspondens to the coexisting state of
aq such aseyy = A(T —1Te) anday = a4 + b, whereT,  SmC: and SmC phases. Linds indicates the phase bound-
T., A andb are the temperature, the transition temperatureary from Smc, to SmC when increasing the electric field ob-
from the paraelectric SmA phase to the Siéahd positive  tained by using Eq. (26). While linds, is the phase boundary
constants, respectively, and using the above equations we cam SmC to SmE when decreasing the electric field which
getayrcp) as following, determined by using Eq. (30) Whef?x obtained by using

Eq. (29) and Eqg. (21). Experimentally it is observed that the
(38) ferroelectric SmC domains appeared and then propagated [7].
Therefore, the field-induced transition from Sin@hase to
SmC phase is discontinuous with a typical hysteresis.

Next, the double hysteresis loop in the Singhase will be
discussed. The Egs. (27)-(30) are giving ¢he — E, curve
together with the stability conditions in Egs. (18)-(19). The
calculateds;, — E, curve in the Sm¢ phase depend on the
coefficients of the fourth order terms and temperature, and two
distinct behavior were observed, as shown in Fig?24-The
SmC;, and SmC phases solutions, Egs. (27)-(30), are stable

A typical E-T phase diagram made on the basis of the arguen the bold lines, andy.; is given with Eq. (28) and .2
ments described above is shown in Fig. 3. The adopted valués given with Eq. (31). In type 1§z2 > &fp1,Er > 0 OF
of parameters are given in the caption. The second and first of-rcp < T' < T¢), as shown in Fig. 4 (a)., the field-induced
der lines are indicated by solid and dotted lines, respectivelyphase transition from SnjCphase to SmC phase, which oc-
The SmA-SmG, second order phase transition takes place aturs atE}, is of the second order, and therefore, the double
ay = 1whenkE, = 0. For large electric field, the SmC phase hysteresis loop is not observed. In typed}fo > Erz1, L, >
becomes most stable and then Sps@MC phase boundary 0orT < Trep), as shown in Fig. 4 (b) and (c), on the other
appears. The part of the second order transition is determindthnd, the transition is of the first order. Since there exist two
by Eq. (26) because the condition Eq. (25) is satisfied ircritical points, P, and P, at which the solution become un-
this case. The TCP is calculated by Eqg. (38) and Eq. (26) astable, the double hysteresis curve appears. This result show
ay = —0.7857 and £, = 0.4629. Below this temperature the existence of TCP.

an d2§f.r

+3
0872063, d&3,

=0. (37)

(2772 - 3ﬁfﬁq)b
202 — 38 8.b + Byn
The E,(rcpy can be obtained by substitung Eq. (38) into

Eqg. (26). No hysteresis appears @frcpy < T < Tc
but it does forT" < as(rcpy, as shown below.

afrop) =

VI. DISCUSSIONS
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FIG. 4: Calculated hysteresis loop at (a). = 0.9°C, (b)ay =0.4°C, (¢).ay =-0.15C, withay = aq+ 1,8, =0.3,8; =n=1,x5 =1,
Ay = linthe SmE}, phase.

VIl. CONCLUSION point has been found . No hysteresis appears for the tempera-
ture between ;¢ py andT¢ but it does for the temperature

The E — T phase diagram of MHPOCBC near the SmA- belowas(rcp).
SmC;, transition point has been established and a tricritical
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